
Simple algorithm to maintain dynamic suffix array for text indexes

3ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÑÈÑÒÅÌÛ

Dmitry V. Urbanovich,
Pavel G. Ajtkulov

ÓÄÊ 004.91+519.256

SIMPLE ALGORITHM TO MAINTAIN DYNAMIC
SUFFIX ARRAY FOR TEXT INDEXES

© Dmitry G. Urbanovich, Pavel V. Ajtkulov, 2011

1. INTRODUCTION

Suffix array is a permutation of all suffixes
of a given string that sorts them lexico-
graphically. Suffix array has numerous appli-
cations, especially in string matching [1], bio-
informatics [10] and text compression [11].

Here is an example of suffix array built for
the string «banana» (table 1).

Left column shows how suffixes are num-
bered.1 Right column shows how (0, 2, 4, 5, 1, 3)
suffix array sorts the suffixes.

There are a lot of suffix array construction
algorithms for immutable string [1, 6, 7]. None
of them allow you to reflect changes in text ef-
ficiently. However, efficient algorithms for
maintaining dynamic suffix structures exist
[2, 4, 5].

In this paper we introduce an algorithm that
maintains suffix array for string that can grow
to the left only. One can perform any suffix ar-
ray aware algorithm on this data structure, be-
cause it maintains LCP information as well. For
example, you can use classical algorithm to find
all occurrences of pattern in text [1]. However,
there will be additional O(log n) overhead due
to data structures used (see section 3.1 for de-
tails).

Also the algorithm can maintain suffix ar-
ray for a string that consists of records (record
is a substring which ends with special charac-

Table 1. Suffixes� numeration and suffix array

(0) a (0) a

(1) na (2) ana

(2) ana (4) anana

(3) nana (5) banana

(4) anana (1) na

(5) banana (3) nana

1 We number suffixes in reverse order. We do so
because our approach builds suffix array by successive
insertions of characters at the beginning of the string. It�s
convenient to preserve old numbers as it clarifies what
happen after insertion.

Abstract

Dynamic suffix array is a suffix data structure that reflects various patterns in a mutable
string. Dynamic suffix array is rather convenient for performing substring search queries over
database indexes that are frequently modified. We are to introduce an O(n log2 n) algorithm
that builds suffix array for any string and to show how to implement dynamic suffix array using
this algorithm under certain constraints. We propose that this algorithm could be useful in real-
life database applications.

Keywords: dynamic extended suffix array, string matching, text index.

Dmitry V. Urbanovich, Pavel G. Ajtkulov

4 © ÊÎÌÏÜÞÒÅÐÍÛÅ ÈÍÑÒÐÓÌÅÍÒÛ Â ÎÁÐÀÇÎÂÀÍÈÈ. ¹ 2, 2011 ã.

ter that appears nowhere else in the record).
Every record can be removed and new record
can be inserted at the beginning of the string.
This results in data structure that allows search-
ing for any substring in all records. It�s similar
to suffix data structures on words (suffix arrays
on words [8], suffix trees on words [9]) in sense
that you can search inside records only, but, as
opposed to structures on the words, our struc-
ture can find any substring, not only word-
aligned one.

In next section, we describe basic ideas
which background the algorithm. In «Details»
section, we describe the algorithm itself.

2. BASIC IDEA

Basic idea is to restrict operations on string
in such a way that only minimal changes in the
suffix array will happen (table 2).

One of these operations is insertion of sin-
gle character at the beginning of the string. For
example, consider we already built suffix array
for string «issippi», and now we are inserting
the character «s» at beginning (our string will
become «sissippi»).

As you can see, relative order of 0�6 suf-
fixes isn�t changed. The only thing happened is
a single insertion of new suffix between 4 and
5. The same will happen in general case, which
is described in «Single Insertion» section. Clear-
ly, we can insert any number of characters by
this way.

The second operation is a removal of a spe-
cial substring called a «record». As we said be-
fore, record is a substring which ends with spe-
cial character that appears nowhere else in the

record. In fact, we can safely remove such a
substring (see «Record Removal» section) with-
out disturbing other suffixes� relative position.

Suffix array can be enhanced by LCP array
maintenance. LCP array is an array which shows
the length of longest common prefix for each
pair of suffixes that have adjacent positions in
suffix array. LCP array is very useful, especial-
ly for improving various search algorithms time
complexity [1], and our algorithm can option-
ally maintain it.

3. DETAILS

3.1. DATA STRUCTURE

As we need to perform efficient modifica-
tions in suffix array, we need a data structure
that supports indexed access, arbitrary inser-
tions, removals and range minimum query
[3, 5], which is based on balanced tree (order-
statistic tree [12]). It is also used to find posi-
tion of suffix in suffix array, when suffix is giv-
en by its length. (This operation implements
inverted suffix array.) All operations are per-
formed within O(log n).

3.2. SINGLE INSERTION

Insertion of single character at the begin-
ning of the string is two-step. First, we find the
place where to insert new suffix. Second, we
make the insertion itself.

Clearly, inserting a character at the begin-
ning doesn�t change existing suffixes. Hence,
their relative position will not be changed. And
of course, we need to insert new suffix just be-
cause the string became one character larger.

In order to find the place where to insert
new suffix, we perform a binary search over
suffix array comparing some of suffixes with a
new one (see «Comparator Implementation»).
This step works in O(log2 n), where n is a length
of string. It got additional logarithmic multipli-
er due to fact that comparator accesses suffix
array and its inversion via data structure de-
scribed above.

Because insertion is a separate step,
O(log2 n) overall complexity isn�t affected.

Additionally, if we want to maintain LCP
array, we need to update at most two values in

(0) i (0) i

(3) ippi (3) ippi

(6) issippi (6) issippi

(1) pi (1) pi

(2) ppi (2) ppi

(4) sippi (4) sippi

(5) ssippi (7) sissippi

 (5) ssippi

Table 2. Insertion of «s» letter at beginning
of the «issippi» string

Simple algorithm to maintain dynamic suffix array for text indexes

5ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÑÈÑÒÅÌÛ

that array, because at most two pairs of adja-
cent suffixes have been changed (they are neigh-
bors of the new suffix). See «LCP Calculation»
for details.

3.3. RECORD REMOVAL

To remove the record we just need to re-
move all the suffixes that begin in positions
corresponding to the record. We don�t need to
change relative order of other suffixes.

First of all, that�s so, because relative order
of suffixes, which begin in positions of the same
record, doesn�t depend on other records: posi-
tions of left-most special character in such suf-
fixes never coincide � that is, lexicographical
order of such suffixes depends on characters of
single record only.

However, suffix array may become incon-
sistent after record removal operation. Let�s
look at the example. Given a string «ac|bs|ac|b|»,
where «|» is a special character. We are to re-
move «bs|» record (table 3).

First column shows the state of suffix array
before removal. Second column shows the state
after removal. Third column shows correct state
of suffix array for modified string («ac|ac|b|»).
As you can see, 2�7 suffixes in second column
are placed incorrectly. But it doesn�t matter,
because search queries never contain special
character. (If we truncate all the suffixes after
left-most special character, we will see that sort-
ing is correct.)

To perform record removal within
O(m log n), where m is a length of the record,
we use the same data structure as described in
previous section.

If we want to maintain LCP array, we need
to update LCP value for each suffix that is lex-
icographically previous to the suffix to be re-
moved. See «LCP Calculation» for details.

3.4. COMPARATOR IMPLEMENTATION

Comparator lexicographically compares
new suffix to be added against other suffixes.
At first, it compares suffixes by their first let-
ters. If letters are equal, then comparison re-
duces to comparison of suffixes that obtained
by removing first letter of each of the suffixes
to be compared. The order of reduced suffixes
is obtained from the structure that maintains the
suffix array: it can give us position of any giv-
en suffix in the suffix array and this position
gives us relative order of suffixes.

Here�s sample implementation of compar-
ator (listing 1).

Table 3. Example of what happens after removal

(0) | (0) | (0) |

(5) |ac|b|

(2) |b| (2) |b| (5) |ac|b|

(8) |bs|ac|b| (5) |ac|b| (2) |b|

(4) ac|b| (4) ac|b| (7) ac|ac|b|

(10) ac|bs|ac|b| (7) ac|ac|b| (4) ac|b|

(1) b| (1) b| (1) b|

(7) bs|ac|b|

(3) c|b| (3) c|b| (6) c|ac|b|

(9) c|bs|ac|b| (6) c|ac|b| (3) c|b|

(6) s|ac|b|

Listing 1

bool Compare(int pos) {
 int idx = array[pos];
 char fstCh = Str[Str.Length - 1 - idx];
 if (fstCh == ch) {
 if (idx == 0) {
 return true;
 }
 int inverse = array.GetInverse(idx - 1);
 return posLongestSuffix > inverse;
 }
 return fstCh < ch;
}

Dmitry V. Urbanovich, Pavel G. Ajtkulov

6 © ÊÎÌÏÜÞÒÅÐÍÛÅ ÈÍÑÒÐÓÌÅÍÒÛ Â ÎÁÐÀÇÎÂÀÍÈÈ. ¹ 2, 2011 ã.

Variable pos shows the index of suffix to
be compared with new suffix, variable ch is a
new character to be added. Str is a string, for
which suffix array array is already built.
posLongestSuffix is a position of the long-
est suffix in already built suffix array (it
equals array.GetInverse(Str.Length
- 1)), inverse is a position of suffix re-
duced from suffix with index pos in the suffix
array.

We need to find where suffix given by its
position in original string is located in a suffix
array. The structure that answers those queries
is an inversion of suffix array. It�s essentially
based on the same data structure that supports
efficient random access by index, insertions and
deletions. This inversion, of course, should be
updated to reflect move of suffixes in the dy-
namic suffix array.

3.5. LCP CALCULATION

When we insert new suffix, LCP value is
calculated for the longest suffix and its neigh-
bors. This value is calculated with the same as
comparator�s logic. If first letters of suffixes are
different, then their LCP is empty. In case they
are the same, their LCP will be greater than LCP
of corresponding reduced suffixes by one (re-
duced suffix is a suffix obtained by removing
its first letter).

Reduced suffixes may be non-adjacent in
suffix array. In this case, their LCP equals
min i ≤ k < j LCPk, where i and j are positions of

those suffixes [1]. Data structure, that imple-
ments our suffix array, can evaluate this mini-
mum within O(log n) operations (dynamic
range minimum query, DRMQ) [3, 5].

When we remove i suffix (where «i» is a
position of suffix in a suffix array) then
LCPi�1= min(LCPi�1, LCPi). [1]

4. CONCLUSION

We presented an algorithm of suffix array
construction by successive insertions at the be-
ginning of the string. Also we presented how to
remove special type of substrings. Construction
of suffix array for n-character string requires
O(n log2 n) operations. Removal of k-charac-
ter substring requires O(k log n) operations. We
presented an algorithm that maintains auxilia-
ry LCP array. The algorithm can be used to
maintain text database index which supports
insertion of new record, removal and replacing
of existing ones.

The designed algorithm is simpler than oth-
er existing dynamic suffix array construction
algorithm [2, 5].

References

1. Manber U., Mayers G. Suffix arrays: a new method for on-line string searches // SIAM Journal on
Computing. 1993. ¹ 22. P. 953�948.

2. Salson M., Lecroq T., Leonard M., Mouchard L. Dynamic extended suffix arrays // Journal of Discrete
Algorithms, 2010. Vol. 8. P. 241�257.

3. Shibuya T., Kurochkin I. Match chaining algorithm for cDNA Mapping // Algorithms in Bioinformat-
ics: Third International Workshop. Budapest: WABI, 2003.

4. Russo L., Navarro G., Oliveira A. Dynamic Fully-Compressed Suffix Trees // Proceedings of the 8th
Latin American conference on Theoretical informatics, LNCS. 2008. P. 362�373.

5. Ajtkulov P. Symbol array processing, UBS, 28 (2010), P. 126�178.
6. Pang Ko, Srinivas Aluru. Space-efficient linear time construction of suffix arrays // Proceedings of the

14th Annual Symposium on Combinatorial Pattern Matching, 2003. P. 200�210.
7. Dong Kyue Kim, Jeong Seop Sim, Heejin Park, Kunsoo Park. Linear-time construction of suffix

arrays // Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching, 2003. P. 186�199.
8. P. Ferragina, J. Fischer. Suffix arrays on words // In Proceedings of the 18th Annual Symposium on

Combinatorial Pattern Matching. Vol. 4580 of LNCS, 2007.
9. A. Andersson, N. J. Larsson, K. Swanson. Suffix Trees on Words, Algorithmica 23, 1999.
10. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
11. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical Re-

port 124, 1994.

Simple algorithm to maintain dynamic suffix array for text indexes

7ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÑÈÑÒÅÌÛ

12. Cormen T., Leiserson C., Rivest R., Stein Clifford. Introduction to Algorithms (second ed.). MIT
Press and McGraw-Hill, 2001.

Dmitry V. Urbanovich
Udmurt State University,
hun10@yandex.ru

Pavel G. Ajtkulov,
Udmurt State University,
ajtkulov@gmail.comm.

Àííîòàöèÿ

Äèíàìè÷åñêèé ñóôôèêñíûé ìàññèâ ÿâëÿåòñÿ ñòðóêòóðîé äàííûõ, ïîçâîëÿþùåé
ïðîèçâîäèòü ýôôåêòèâíûé ïîèñê ïîäñòðîêè â ÷àñòî èçìåíÿþùåìñÿ òåêñòå. Â ñòàòüå
ïîêàçàí ïðîñòîé ñïîñîá ïîñòðîåíèÿ ñóôôèêñíîãî ìàññèâà äëÿ ïðîèçâîëüíîé ñòðîêè çà
O(n log2 n) îïåðàöèé. Ïðåäëàãàåòñÿ èñïîëüçîâàíèå ýòîãî ñïîñîáà äëÿ ïîääåðæêè
äèíàìè÷åñêîãî ñóôôèêñíîãî ìàññèâà äëÿ ñòðîê ñïåöèàëüíîãî âèäà, ïðåäñòàâëÿþùèõ
èíäåêñû â áàçàõ äàííûõ.

Êëþ÷åâûå ñëîâà: äèíàìè÷åñêèé ñóôôèêñíûé ìàññèâ, ïîèñê ïîäñòðîêè, èíäåêñàöèÿ
òåêñòà.

ÏÎÄÄÅÐÆÊÀ ÄÈÍÀÌÈ×ÅÑÊÎÃÎ ÑÓÔÔÈÊÑÍÎÃÎ
ÌÀÑÑÈÂÀ ÄËß ÈÍÄÅÊÑÀÖÈÈ ÒÅÊÑÒÀ

